![]() Wireless communication
专利摘要:
A method for use in controlling pressure based signal transmission within a fluid in a flowline comprises transmitting a pressure based signal through a fluid within a flowline using a flow control device, recognising a condition change associated with the flowline, and then controlling the flow control device in accordance with the condition change. Another method, or an associated method for use in communication within a flowline comprises determining or composing an optimised pressure based signal for detection at a remote location and then transmitting said optimised signal using a flow control device. 公开号:AU2013223875A1 申请号:U2013223875 申请日:2013-02-20 公开日:2014-08-21 发明作者:Havar Sortveit;Bard Tinnen 申请人:Tendeka BV; IPC主号:H04B11-00
专利说明:
WO 2013/124645 PCT/GB2013/050403 1 WIRELESS COMMUNICATION FIELD OF THE INVENTION The present invention relates to methods and apparatus associated with 5 wireless communication within a flowline, and in particular, but not exclusively, to methods and apparatus associated with wireless communication within a wellbore flowline using pressure based signals. BACKGROUND TO THE INVENTION 10 To optimise recovery, the oil industry depends on gathering data from wells and reservoirs. Such data forms the basis for nearly every decision with respect to the development and operation of an oil field, including where to locate new wells, maintenance programs and allocation/control of production. In view of this need for data, many well applications are completed with 15 permanently installed downhole instrumentation, such as pressure and temperature monitoring devices. Due to the generally harsh welibore environment, permanent instrumentation has a limited lifetime and there is an expectancy of failure. Such failure leads to limited obtainable information from the reservoir and limited control possibilities. This may have a serious impact on the understanding and modelling of 20 the reservoir and reduce the reservoir recovery factor. Furthermore, known installations typically require electrical supply and communication lines running the length of the production tubular from the wellhead down to the downhole monitoring and/or control system, said lines normally being secured to the production tubular using tailored clamps, Fitting cables to the tubing is a 25 time consuming activity that prolongs the installation time. During installation and use of equipment such as traditional downhole pressure and temperature sensors, the cables, clamps, splices, penetrators, connectors and the like may become exposed to well fluids and are natural failure nodes. If damage occurs, the worst-case scenario is that the entire length of tubing must be retrieved to replace a damaged cable. If the 30 damaged equipment is repairable, a well service operation must be performed. Other borehole devices, such as multiphase flow meters, sand detectors, valves, chokes, circulation devices and the like may also be installed as part of a permanent borehole completion, and where this is the case similar problems as described above apply. WO 2013/124645 PCT/GB2013/050403 2 Depending on the well conditions, the lifetime expectancy of permanently installed equipment may range from a few months to a few years, and as noted above should permanent equipment fail, the only remedy in most cases is to re-complete the well, meaning replacing the production tubular and associated systems. This operation 5 entails high risk and cost and is generally very undesirable. Retrofit downhole monitoring and/or control systems are desirable in the art for use in the event of failure or compromise in permanent monitoring systems, thus permitting the continuity of dataflow from the well to be regained/maintained. In addition to such retrofit solutions, there is a recognised desire for downhole monitoring 10 and/or control systems that are easily installed, retrieved and maintained, in order to provide for a long-term monitoring and/or control functionality in harsh well conditions. WO 2006/041308 describes autonomous systems for downhole data acquisition and wireless data transmission in a well, and wireless downhole control systems enabling remote wireless flow control of downhole production and/or injection zones in 15 a well related to the production of hydrocarbons. Specifically, operation of a restricting valve element in the pipe flow can be used to send a wireless telegram in an oil or gas well, i.e. wireless signal transmission is achieved by transmitting pressure pulses via flowing fluid. Autonomous downhole devices such as the systems described above may 20 experience a range of changing parameters in the well. Examples of such include pressure changes, changes in fluid flow rate and changes in fluid composition. Such changing parameters may adversely affect the operation of a device, for example by presenting conditions which do not support appropriate detection/reception of transmitted signals without requiring modification or modulation of the autonomous 25 downhole device, Furthermore, certain well operations may be such that transmission of signals is not supported, for example during periods of well shut-in and the like. SUMMARY OF THE INVENTION According to a first aspect of the present invention there is provided a method 30 for use in controlling pressure based signal transmission within a fluid in a flowline, comprising: transmitting a pressure based signal through a fluid within a flowline using a flow control device; recognising a condition change associated with the flowline; and 35 controlling the flow control device in accordance with the condition change. WO 2013/124645 PCT/GB2013/050403 3 The present invention may permit the flow control device to be appropriately controlled in accordance with changing conditions within the flowline. Such control may facilitate optimisation of signal transmission and/or use of the control device, The present invention may be beneficial in flowlines which are subject to changing 5 conditions over time, such as flowlines associated with the production of hydrocarbons form subterranean reservoirs. For example, the flow control device may be initially configured for operation, for example optimum operation, relative to flowline conditions at the time of commissioning, wherein such conditions may change over the course of time. For example, reservoir and wellbore pressures will naturally reduce during 10 prolonged hydrocarbon production. In accordance with the present invention such changes may be recognised and the flow control device controlled accordingly. Preferred or optimum operation may thus be maintained, The method may be for use in controlling pressure based signal transmission within a flowing fluid in a flowline, In such an arrangement transmission of the signal 15 may be permitted or supported by the fact that fluid is flowing. As such, the transmission mode may not be based on the generation of shockwaves within the fluid, but instead on the principle of modifying the pressure of the flowing fluid. The flowline may comprise, form part of or be located within a wellbore, such as a wellbore associated with hydrocarbon production from a subterranean reservoir, In 20 such an arrangement the method may relate to a method for use in controlling pressure based signal transmission within a fluid in a wellbore. The fluid may comprise a wellbore fluid. The fluid may comprise a production fluid, for example hydrocarbons, water or the like. The fluid may comprise an injection fluid, such as a chemical treatment, fracturing fluid, lost circulation fluid, well kill fluid or the like. The fluid may 25 comprise a completion fluid. The signal may be transmitted to provide communication between downhole and surface locations and/or vice versa, for example. The signal may be transmitted to provide communication between different downhole locations. The pressure based signal may be composed to transmit data, for example data associated with the fluid, flowline and/or adjacent regions or components. The 30 pressure based signal may be composed to transmit data associated with pressure, temperature, fluid composition, flow rate, fluid density or the like. The pressure based signal may be composed to transmit data obtained from at least one sensor. The at least one sensor may be located within the flowline. The at least one sensor may be associated with, for example form part of, the flow control device, The method may 35 comprise obtaining data to be transmitted, for example via one or more sensors, and WO 2013/124645 PCT/GB2013/050403 4 using the flow control device to generate one or more signals within the fluid which is representative of such data. Reception of the signal and appropriate signal analysis may be used to extract the transmitted data. The method may comprise regularly transmitting a signal through the fluid. For 5 example, the method may comprise transmitting at defined intervals. The control device may be configured to impart a signal within the fluid by presenting a variable restriction to flow. The method may comprise controlling the flow control device to vary a restriction to flow to generate a signal, typically a pressure variation, within the fluid. Accordingly, the signal may be generated as a function of the 10 fluid flow. The flow control device may comprise a regulating member configured to vary a flow path. The regulating member may be configured to modify a flow area through one or more flow ports. The regulating member may be operated by a drive arrangement, such as a motor, piston or the like. The flow control device may comprise an onboard power supply, such as a battery power supply, a generator 15 system or the like. The flow control device may be provided in accordance with the device disclosed in WO 2006/041308, the disclosure of which is incorporated herein by reference. The pressure based signal may comprise at least one pressure variation imparted within the fluid by the flow control device. The pressure variation may be 20 defined as a variation in pressure from a baseline flow condition, Such a baseline condition may include normal flowing conditions of the fluid. The pressure variation may define a pressure pulse within the fluid. The pressure based signal may comprise a plurality of temporally spaced pressure variations imparted into the fluid, The pressure based signal may comprise or define at least one signal 25 parameter. At least one parameter may comprise amplitude. The amplitude may comprise or be defined by a pressure differential or variation relative to baseline flow conditions, for example, conditions under which no signal is transmitted, At least one parameter may comprise a time duration of a pressure variation. Such a time duration may be defined as a pulse width. At least one parameter may comprise a time lapse 30 between sequential pressure variations. Such a time lapse may be defined as a pulse separation. Appropriate data may be embedded within the signal in accordance with one or more signal parameters. For example, appropriate data may be associated with an amplitude parameter, a pulse width parameter, a pulse separation parameter, for 35 example. In some embodiments a pulse separation parameter may be associated with WO 2013/124645 PCT/GB2013/050403 5 data, for example a digitised data format. In such an arrangement other parameters, such as amplitude and pulse width, may be selected to ensure detection by a receiver. The method may comprise recognising a condition change associated with the flowline and then controlling the flow control device to modify the pressure based 5 signal, For example, the method may comprise controlling the flow control device in accordance with a recognised condition change to optimise the pressure based signal. Such optimisation may be achieved in terms of creating and/or maintaining an optimum signal which permits appropriate detection of the signal by a receiver. For example, maintaining a uniform signal format irrespective of a condition change within the 10 flowline may eventually result in the inability to detect the signal at a receiver. Signal optimisation may be achieved by controlling the flow control device to modify one or more parameters of the signal, such as amplitude, pulse width, pulse separation or the like. The method may comprise controlling the flow control device in accordance 15 with the condition change to facilitate efficient operation of the flow control device, for example efficient power usage. The method may comprise recognising a condition change within the flowline and associating the condition change with the occurrence of an event. For example, the method may comprise recognising a flowline shut-in event, Le., an event in which 20 flow within the flowline is significantly reduced or is stopped. Such a flowline shut-in event may intentionally occur, for example to permit one or more operations to be performed within the flowline, or within or with equipment associated with the flowline. In embodiments where the flowline is associated with a wellbore, shut-in may be required to facilitate intervention operations, testing of wellbore pressure barriers, 25 installation, testing and commissioning of equipment, recording data associated with the flowline during shut-in and the like. The method may comprise recognising a flow rate variation and associating this with a flowline shut-in event. The method may comprise recognising a pressure variation, such as a pressure 30 increase within the flowline and associating this with a flowline shut-in event. The method may comprise recognising a pressure variation beyond, for example above a threshold value and associating this with a flowline shut-in event. The threshold value may comprise an absolute value, or a differential or deviation value relative to a baseline condition. The method may comprise recognising a pressure variation as a 35 function of time and associating this with a shut-in event. For example, the method WO 2013/124645 PCT/GB2013/050403 6 may comprise recognising a pressure variation within a specific time period. This may be associated with a rate of change of pressure. The method may comprise recognizing the occurrence of a pressure variation, for example above a threshold value for a threshold or predetermined time period. For example, the method may 5 comprise recognising a prolonged pressure variation beyond a threshold value. This arrangement may permit differentiation to be made between a shut-In event and other events in which a pressure variation is also present, albeit for a shorter period of time. The method may comprise recognising a flow initiating event, [e., an event in which flow within the flowline is initiated or is significantly increased. The flow control 10 device may then be controlled in accordance with the event. The method may comprise recognising a flow rate variation and associating this with a flow initiating event. The method may comprise recognising a pressure variation, such as a pressure decrease within the flowline and associating this with a flow initiating event. The 15 method may comprise recognising a pressure variation as a Function of time and associating this with a flow initiating event The method may comprise controlling the flow control device by altering the mode of operation of said device. The method may comprise controlling the flow control device to cease signal 20 transmission in response to a recognised condition change. The method may comprise ceasing signal transmission in the event of a recognised condition change which renders transmission difficult or impossible, such as low or no flow, for example during a flowline shut-n event. Accordingly, ceasing transmission during such conditions may facilitate energy efficient operation of the [low control device. The 25 method may comprise controlling the flow control device to cease signal transmission in response to a recognised flowline shut-in event, The method may comprise controlling the flow control device to reinitiate signal transmission in response to a recognised condition. The method may comprise reinitiating signal transmission following a period of ceased transmission. For example, 30 the method may comprise reinitiating signal transmission upon recognition of a condition change which again supports signal transmission, The method may comprise controlling the flow control device to reinitiate signal transmission in response to a recognised flow initiating event. The method may comprise controlling the flow control device to cease signal 35 transmission, and collecting and storing data during the period of ceased transmission. WO 2013/124645 PCT/GB2013/050403 7 Such data may be collected regularly. Such data may be associated with the flowline, such as pressure data, temperature data and the like. Such data may be representative of flowline data during a shut-in event. The method may comprise controlling the flow control device to reinitiate signal transmission and composing one 5 or more signals to transmit at least a portion of the data stored during the period of ceased transmission. The method may comprise controlling the flow control device by modifying operational parameters stored within the flow control device. For example, the flow control device may operate in accordance with specific algorithms or protocols, wherein 10 such algorithms or protocols are modified in accordance with a recognised condition change within the flowline, The flow control device may comprise a parameter matrix, and the method may comprise modifying parameters, such as amplitude and pulse duration in accordance with a recognised condition change. The method may comprise monitoring a condition associated with the flowline 15 to provide for recognising a condition change, Monitoring may be achieved by use of one or more sensors. At least one sensor may be provided exclusively for such monitoring. At least one sensor may be provided for both data collection to be transmitted and monitoring. Monitoring may be achieved by use of, for example, a pressure sensor, temperature sensor, carbon/oxygen log sensor, vibration sensor, 20 vortex shedding sensor, flow rate sensor or the like, or any suitable combination. The method may comprise continuously monitoring a condition associated with the flowline, The method may comprise discontinuously monitoring a condition associated with the flowline, for example at a desired sampling rate. The method may comprise recognising a pressure condition change. 25 The method may comprise recognising a temperature condition change. The method may comprise recognising a flow rate condition change. The method may comprise recognising a fluid composition condition change. The method may comprise determining or composing an optimised signal for detection at a remote location, and transmitting said optimised signal using the flow 30 control device. The method may comprise modifying the optimised signal in accordance with a recognized condition change. The method may comprise composing or determining an optimised signal in accordance with simulations, for example software simulations associated with the flowline. WO 2013/124645 PCT/GB2013/050403 8 The method may comprise composing or determining an optimised signal by transmitting one or more test signals. The method may comprise: transmitting a plurality of pressure based test signals; 5 receiving at least one test signal at a receiver; determining or selecting an optimal signal from the at least one received test signal; and transmitting a determined or selected optimal pressure based signal through the fluid within the flowline. 10 The method may comprise receiving a plurality of test signals at the receiver and determining or selecting an optimal signal from the plurality of received test signals. Two or more test signals may be composed with at least one different signal parameter, such as amplitude, pulse width, pulse separation or the like. 15 The method may comprise communicating a positive determination of an optimal signal from the receiver to the flow control device, This may permit the flow control device to transmit a signal in accordance with the determined optimal signal. Communicating a positive determination may be achieved by wireless transmission of a signal, such as a pressure based signal, for example the determined optimal signal. 20 Communicating a positive determination may be achieved by performance or initiation of a recognisable event within the flowline, such as a shut-in event. According to a second aspect of the present invention there is provided a communication apparatus for communication within a flowline, comprising: a flow control device configured for transmitting a pressure based signal 25 through a fluid within a flowline; a monitoring system for monitoring at least one condition associated with the flowline; and a controller configured to control the flow control device in accordance with a condition change recognised by the monitoring system. 30 The apparatus may be configured to perform the method according to the first aspect. Various features associated with the first aspect may be applied to the second aspect. The apparatus may comprise a receiver which is posited remotely from the flow control device and which is configured for detection/reception of a transmitted signal. WO 2013/124645 PCT/GB2013/050403 9 According to a third aspect of the present invention there is provided a method of communicating within a flowline, comprising: transmitting a pressure based signal through a fluid within a flowline using a flow control device; and 5 controlling the flow control device upon recognition of a condition change within the flowline. According to a fourth aspect of the present invention there is provided a method for use in communication within a flowline, comprising: determining or composing an optimised pressure based signal for detection at a 10 remote location; and transmitting said optimised signal using a flow control device. The method may comprise composing or determining an optimised signal in accordance with simulations, for example software simulations associated with the flowline, 15 The method may comprise composing or determining an optimised signal by transmitting one or more test signals. The method may comprise: transmitting a plurality of pressure based test signals; receiving at least one test signal at a receiver; 20 determining or selecting an optimal signal from the at least one received test signal; and transmitting a determined or selected optimal pressure based signal through the fluid within the flowline. The method may comprise receiving a plurality of test signals at the receiver 25 and determining or selecting an optimal signal from the plurality of received test signals. Two or more test signals may be composed with at least one different signal parameter, such as amplitude, pulse width, pulse separation or the like. The method may comprise communicating a positive determination of an 30 optimal signal from the receiver to the flow control device. This may permit the flow control device to transmit a signal in accordance with the determined optimal signal. Communicating a positive determination may be achieved by wireless transmission of a signal, such as a pressure based signal, for example the determined optimal signal. Communicating a positive determination may be achieved by performance or initiation 35 of a recognisable event within the flowline, such as a shut-in event, WO 2013/124645 PCT/GB2013/050403 10 Various different aspects have been defined above. It should be understood that various features of one aspect may be applied, in isolation or in any suitable combination, to any other aspect. 5 BRIEF DESCRIPTON OF THE DRAWINGS These and other aspects of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which: Figure 1 is a diagrammatic illustration of a wellbore arrangement subject to wireless communication of signals in accordance with an embodiment of the present 10 invention; Figure 2 is a diagrammatic illustration of a modified wellbore arrangement which is also subject to wireless communication of signals in accordance with an embodiment of the present invention; Figure 3 illustrates an exemplary embodiment a flow control device which is 15 used for wireless communication within a welibore; Figure 4 illustrates example transmitted and received pressure based signals; Figure 5 illustrates a method for optimising signal transmission; Figure 6 is a diagrammatic illustration of a wellbore arrangement which is subject to a shut-in procedure; 20 Figure 7 illustrates a typical pressure build-up curve of a well during shut-in; Figure 8 illustrates exemplary wellbore pressure trends associated with some wellbore operations; Figure 9 illustrated changing pressure conditions within a welibore over time; and 25 Figure 10 is a diagrammatic illustration of a modified wellbore arrangement which is also subject to wireless communication of signals in accordance with a further embodiment of the present invention. DETAILED DESCRIPTION OF THE DRAWINGS 30 Aspects and embodiments of the present invention relate to methods and apparatus for use in communicating wirelessly within a wellbore, such as wellbore 101 shown in Figure 1 which facilitates production of hydrocarbons such as oil and/or gas from a subterranean reservoir 103 via a set of perforations 102. Somewhere on the surface of the earth the wellbore 101 is terminated in a wellhead 104 which includes 35 appropriate valves and monitoring systems to control and operate the well in WO 2013/124645 PCT/GB2013/050403 11 accordance with relevant procedures and legislation. Downstream of the wellhead 104 the produced hydrocarbons flow through a flowline 105 to a production facility such as a separator and tank facility (not shown). Oil or gas fields typically comprise numerous wells, of which most/ali produce 5 into the same processing facility, As wells may be of uneven pressure, for example due to penetrating different sections of the reservoir 103 or different reservoir units, regulation is required on surface to ensure that the production from each well arrives at the production facility at equal pressure. In order to provide for this, most flowlines 105 are equipped with a choke valve 107 in order to regulate pressure. Further, most 10 flowlines 105 and/or wellheads 104 are equipped with a pressure sensor 106 to monitor the wellhead pressure. It is desirable to provide some form of communication within the wellbore, for example between downhole and surface locations, Such communications have been known to be provided by dedicated wires and cables which extend along the entire 15 communication path. However, such wired communication may be subject to failure within the wellbore environment. Forms of wireless communication are therefore of interest in the art In the present embodiment a flow control device or system 108 is located at a downhole location and functions to control the flow within the wellbore, for example 20 production flow, to apply pressure based signals 112 through the well fluid to provide wireless communication between the surface and downhole location. As will be described in more detail below, embodiments of the present invention permit control over the pressure based signal transmission by recognising a condition change associated with the wellbore and then controlling the device 108 in accordance with the 25 condition change. The device 108 can be used to monitor and/or control the well, For downhole data monitoring purposes, the device 108 uses one or more sensors. A sensor suite 111 is provided, which for illustrative purposes may include a pressure sensor, defined by the letter "P". Other sensors, such as temperature sensors, flow rate sensors, 30 composition sensors and the like may alternatively or additionally be provided. A control module 110 is used to record and process data obtained by the sensor suite 111. The device 108 comprises a choke/flow regulator valve or assembly 109 which is used to intelligently impose pressure variations 112 on the flowing production fluid in order to transmit the recorded data to surface. On surface, the pressure signals 112 WO 2013/124645 PCT/GB2013/050403 12 are received by a sensor such as a pressure sensor 106 and an analysis system (not shown) is used to extract the downhole information. Figure 2 illustrates a wellbore which is largely similar to that shown in Figure 1, and as such like components share like reference numerals. However, the 5 arrangement shown in Figure 2 differs in that a flow control device or system 201, which is configured similarly to downhole device 108, is provided at the surface location (effectively replacing or modifying the choke 107 in Figure 1) and which is used for receiving signals 112 transmitted from the downhole device 108 as well as transmitting pressure signals 205 to said downhole device 108, and or other remote locations. 10 Reference is now made to Figure 3 in which there is shown one embodiment of a flow control device or system 108 which may be used to monitor downhole conditions, such as pressure and temperature data, and transmit such data wirelessly to surface by means of imposing pressure pulses onto the flowing fluid in the well 101. The device 108 functions in a similar manner to that described in WO 2006/041308, the 15 disclosure of which is incorporated herein by reference. The device 108, which includes the choke/flow regulator valve or assembly 109, includes a housing 210 which is secured to the well/production tubing 101 by means of a packer arrangement 212. The packer arrangement 212 restricts the fluid flow 216, which can be both produced as well as injected fluids, along the tubing 101 causing 20 flow through flow ports 218 formed in the wall of the housing 210 and into a flow path 214 which is in fluid communication with surface. A regulator assembly or element 220 is mounted within the housing 210 and is actuated to move by a drive arrangement 222 to vary the flow area through the ports 218 and into the flow path 214 to generate pressure based wireless signals 112 which are then transmitted via the fluid to surface. 25 The drive arrangement 222, which is also mounted within the housing, comprises an electric motor 230 which operates a pump 232 to displace a fluid to/from a piston chamber 234 in order to apply work on a drive piston 236 secured to the regulator assembly 220 via shaft 238. A battery module 240 and an control/electronics module 242 are used to 30 energise and control the operation of the device 108. To transmit one single pressure pulse (negative pulse in this embodiment) the motor 230 is used to operate the pump 232 to pump fluid into a piston chamber 234 to cause the drive piston 236 and regulator assembly 220 (via shaft 238) to shift to the right in Figure 3. This has the effect of reducing the flow area through the flow ports 35 218 thus choking the flow and generating a pressure drawdown downstream of the WO 2013/124645 PCT/GB2013/050403 13 device 108. After having applied the required pressure amplitude (pressure drawdown) for a sufficient period of time to permit detection at surface, the motor 230 is reversed to offload fluids from the piston chamber 234. A spring 246 causes the regulator assembly 220 to retract and the production returns to "normal", i.e. a fully open 5 position. Figure 4, which is a plot of pressure vs time, illustrates a characteristic signal transmission sequence which may be achieved by appropriate use of the flow control device 108, in accordance with the present invention. Selectively restricting the flow ports 218 may establish a signal pattern 301 which comprises a set of generated 10 pressure fluctuations, or pulses 301a - 301e which are composed to represent appropriate data to be transmitted. The pulses 301a - 301e are provided by variations from a baseline pressure P b which is the pressure within the wellbore when flowing without restriction imposed by the device 108. Each pulse 301a - 301e comprises particular signal parameters including a duration or pulse width d and an amplitude A. 15 The time lapse between sequential pulses 301a - 301e may be defined as a pulse separation, or frequency. This pulse separation may be of importance in embedding appropriate data. For example, the pulse separation may be selected to be representative of a digitised data format. It is vital that the signal pattern 301 is detectable at surface, and the present invention achieves this by selection of 20 appropriate signal parameters, including pulse width d and/or amplitude A, which will be discussed in more detail below. When appropriate signal parameters are selected a received signal pattern 302 will be detected at surface, with an appropriate time lag 303. The received signal will comprise individual pulses 302a - 302e which can be appropriately processed to 25 extract the embedded data. As noted above, the present invention provides a signal which will be capable of being detected at surface, or any other intended point of reception. In accordance with one embodiment of the present invention correct parameters for amplitude and duration may be achieved by means of a software simulation up-front any installation in 30 the well. Further, the device or system 108 (Figure 1) may be programmed with a parameter matrix, and change amplitude A and duration d according to read downhole parameters, read by systems sensors such as pressure sensors, flow sensors and phase composition and/or density sensors. WO 2013/124645 PCT/GB2013/050403 14 Figure 5, which is also a plot of pressure vs time, illustrates another method according to an embodiment of the present invention for providing an optimised signal. The method comprises sending a trial signal 310 which may include a number of trial pulses 312, 314, 316, 318 which each comprise different signal parameters, specifically 5 pulse width d and amplitude A, Although single pulses are provided, a plurality of pulses may be transmitted with one set of signal parameters, then a plurality of pulses with a different set of signal parameters, and so on. Further, each illustrated individual pulse may represent an entire test signal, such that in the embodiment shown in Figure 5 four test signals 312 - 381 are presented. A receiver at a target location, such as 10 surface level, is operated to detect a received signal 320 which corresponds to the transmitted test signal. Upon analysing the received signals 320, the optimal amplitude A and/or duration d may be determined. This can then be communicated to the downhoie device 108 (Figure 1) by means of surface to downhole wireless communication, or by means of alternative actions such as shutting in the well for a 15 predetermined amount of time. in addition to this, the present invention permits other intelligence ato be accounted for. For example, excessive choking of the well is generally to be avoided as this may otherwise entail unwanted disturbances to the production flow. Further, as the well gets older, the pressure conditions and fluid regime may change, due to a 20 decline in reservoir pressure. Embodiments of the present invention permit optimal signalling (for example in order to achieve the correct amplitude A and/or pulse width d) by applying intelligence to the transmission system. Specifically, embodiments of the present invention permit condition changes within the wellbore 101 (Figure 1) to be recognised and the flow control device 108 controlled accordingly to adapt the signals 25 to the changing conditions. This is described in more detail below. Figure 6 illustrates the same well 101 as presented in Figure 1, with one exception: in Figure 6 the well 101 is not producing. That is, the well 101 is shutin such that there is no flow. By closing valves suci as a downhole safety valve 401 and wellhead valve(s) 402 the production from the well 101 can be stopped. This may be 30 required in cases of emergency, but shutting wells in is also very common for other reasons such as: testing - performing so-called pressure build-up (PBU) tests is common in order to acquire data that can be interpreted t o yield important information about the well 101 and/or the reservoir 103: WO 2013/124645 PCT/GB2013/050403 15 maintenance - wells are commonly shut-in to permit in-well maintenance or other maintenance, for instance on the production facility; production stop due to the introduction of or excess of unwanted fluids such as water, 5 The device or system 108 is designed to transmit signals through the producing fluid, hence signalling is not possible when the well 101 is shut in. As will be described in more detail in the following sections, embodiments of the present invention permit a recognition of changing conditions within the well, which may be indicative of a specific event, such as shut-in, with changes to the operational modus of the device 108 being 10 made accordingly. For the shut-in well scenario, such change does in one embodiment imply a stop in the signaling activity to avoid wasting system power, as signalling is not possible due to the halt in fluid movement. Figure 7 illustrates a typical pressure build-up (PBU) curve 410, i.e. the downhole pressure trend when going from a production modus to a shut-in modus of 15 the well. Time is used as the reference along the x-axis and Pb, a short-name for wellbore pressure, is plotted along the y-axis. When the well is flowing, PLa equals the value Pwf, i.e, the flowing wellbore pressure. At time t,, the well is shut in. Gradually, the pressure Pb rises to P 2 at time t. In many cases, it is of great interest to know the value of Pb, 20 In order to store and subsequently report the value P,, the downhole device or system 108 recognises the fact that the well is being shut in. One method to achieve this is to transmit a wireless message from the surface beforehand or at the time of shutting in the well, informing the downhole device(s) that this is the case. However in some cases that may not be possible due to a lack of signalling systems on surface or 25 other reasons, Figure 8 shows aspects related to one embodiment of the present invention, further to a scenario where the downhole device or system 108 is configured to perform a self-assessment and correct behaviour subsequent to recognised wellbore changes. Figure 8 illustrates pressure changes which may be typical within a wellbore. The 30 given trend starts in a time period 412 where the well of this example is producing, In conjunction with the installation of an autonomous downhole tool, such as the device 108 described herein, the vell is shut-in for the job of installing the system. The first pressure build-up profile 414 shows a typical pressure path when the well is shut-in for a short period of time (related to rigging up and installing the downhole equipment). 35 The first pressure build-up profile 414 is normally followed by a short period of WO 2013/124645 PCT/GB2013/050403 16 producing the well 416 to verify that all downhole components are working satisfactorily. Upon verification, the well is shut-in a second time in order to rig down relevant intervention equipment such as pressure control equipment associated with a wireline operation. This stage is associated with pressure trend 418. Thereafter, the 5 well is put on normal production 420, which may last for a prolonged period of time. Atter some time of production, the well is shut-in in order to perform a shut-in test. When shutting in, a profile such a pressure trend 422 is experienced. This typically has a longer duration than the shut-in periods that are associated with the installation work 414, 418, and as a consequence, the pressure increase is higher as 10 pressure effects from more remote reservoir segments will be experienced in the wellbore, for example. The present invention operates, or permits operation of the downhole device or system 108 in accordance with a number of desires, including: the system should not spend energy on attempting to send data during a shut-in 15 period; the system should preferably record representative shut-in data, such as the pressure value at the time of shutting in the well; the system should transmit the recorded data to surface when production is started again; 20 the system should preferably not transmit shut-in data recorded during short periods of shutting in the well such as the periods described by the two first pressure trends 414, 418 - these periods may be too short to provide for useful representations of shut-in data, In one embodiment of the invention, the tool is programmed to recognise a true 25 shut-in period 422 by monitoring pressure differences versus time. A true shut-in period 422 is defined by a certain pressure increase AP,,i taking place. As this may also be the case in other, smaller shut-in periods 414, 418 where data acquisition may not be of interest, a true shut-in period 422 may also be defined by a characteristic time factor t e, ., if a pressure increase further to AP, is experienced, and sustained for 30 a time period longer than a time equal to tear then a real shut-in period 422 is recognised as taking place. Upon recognising this, the tool starts to sample pressure data at regular time intervals, and in a preferred embodiment, the device 108 transmits the last recorded build-up pressure when the production is started again, after a certain time of stabilisation. WO 2013/124645 PCT/GB2013/050403 17 Typically, a representative pressure data such as the pressure in place at t = is recorded and subsequently reported to the surface, after the production is initiated again. Normally, the further into the pressure build-up period 422, the more representative the data will be. Therefore, the device 108 will record shut-in data 5 continuously, and transmit the last recorded representative value after the production has started again. In the same manner, the device can be programmed to identify the time of starting the production again after a time of shutting the well in. As shown in Figure 8, this can be performed by recognising a pressure drop APa and this being sustained 10 or exceeded for a period of t =to. At the initiation of the production after shut-in period 422, some pressure disturbance may be experienced. To avoid recording and transmitting pressure data from that period (such data may be faulty and not represent the shut-in period), reverse time lags may be added to the procedure. As an example, the device 108 may be 15 programmed to transmit the last data recorded up to a minimum of 2 hours prior to a recognised production start-up. In one embodiment, the device 108 is capable of making a mathematical representation of the pressure trend 422, and transmit a digital representation of the mathematical representation to the surface. This may compensate for band-width and 20 energy usage problems related to transmitting a large amount of datapoints representing the same curve. The mathematical representation could be created by transmitting the constants of an mathematical equation, i.e, numerical analysis of the data, or by comparing the recorded curve form with template curves in a library, transmitting the characteristic number for the best match curve, together with required 25 absolute values. Figure 9 illustrates another aspect related to the advantages of the present invention in being capable of recognising condition changes within a wellbore and adapting accordingly. A typical pressure trend 430 is illustrated which represents a well falling off plateau production. Plateau is defined as a production rate when the 30 well provides equal to or more fluids than the production facility can accept. When wells have drained the reservoir segment for a longer period of time, it is quite common that the downhole pressure drops. This pressure drop may be associated with changes in the fluid flow rate, and to the fluid composition, possibly due to free gas being released from the oil, or the commencement of water production from aquifers or water 35 injection wells. The present invention permits recognition of such changing conditions WO 2013/124645 PCT/GB2013/050403 18 and controls the device 108 to correct its behaviour further accordingly. For example, if the device 108 reads a wellbore pressure equal to or lower than Pr it may change settings related to pulse duration d and amplitude A of the transmitted pressure pulse signals (see, for example, Figure 4) as weil as settings related to the recognition of a 5 pressure build-up and associated production start event. A similar new change may take place when the wellbore pressure goes below P, 4 . Figure 10 illustrates another embodiment of the present invention, Specifically, Figure 10 illustrates a wellbore 101 almost identical to that shown in Figure C, and as such like features are represented by like reference numerals, and only the differences 10 will be highlighted. The downhole device 108 is equipped with (an) additional sensor(s) 440. This could be sensors for monitoring flow velocity, water out, fluid density and other relevant downhole parameters. Following the same argumentation as for the previous figures; depending in recorded changes in the sensor(s) 440, the downhole device 108 may change its operating characteristics, this being characteristics such as; 15 amplitude and pulse width or duration of wireless signal pulses; signal transmission frequency; detection levels for recognising shut-in and production start events; transmission of more/additional types of information, for example information on water-cut may identify when water is confirmed present; 20 changes in parameters for energy generation modules of the device 108. in one or more embodiments of the invention, the additional sensor(s) 440 may fulfil more than one role in the system 108, such as; propeller system used as status sensor for determining a shut-in period and/or flow sensor for sensing flow velocity and/or energy generator; 25 vibration based system (vortex shedding device or lift reversal device) used as status sensor for determining a shut-in period and/or flow sensor for sensing flow velocity and/or energy generator. It should be understood that the embodiments described herein are merely exemplary and that various modifications may be made thereto without departing from 30 the scope of protection. For example, the methods and devices described above may be utilised within any flowline, and are not restricted for welibore use.
权利要求:
Claims (36) [1] 3. The method according to claim I or 2, wherein the pressure based signal is 15 composed to transmit data associated with at least one of the fluid, the flowline, the flow control device and adjacent regions or components. [2] 4. The method according to claim 1, 2 or 3, comprising obtaining data to be transmitted and using the flow control device to generate one or more signals within the 20 fluid which is representative of such data, [3] 5. The method according to any preceding claim, wherein the pressure based signal comprises at least one pressure variation imparted within the fluid by the flow control device, 25 6, The method according to claim 5, wherein the pressure based signal comprises or defines at least one signal parameter including at least one of amplitude, a pulse width and a pulse separation 30 7. The method according to any preceding claim, comprising recognising a condition change associated with the flowline and then controlling the flow control device to modify the pressure based signal. WO 2013/124645 PCT/GB2013/050403 20 [4] 8. The method according to claim 7, comprising controing the flow control device in accordance with a recognised condition change to optimise the pressure based signal 5 9. The method according to claim 8, wherein optimisation is achieved in terms of creating and/or maintaining an optimum signal which permits detection of the signal by a receiver. [5] 10. The method according to claim 8 or 9, comprising modifying one or more 10 parameters of the signal to optimise said signal, [6] 11. The method according to any preceding claim, comprising recognising a condition change within the flowline and associating the condition change with the occurrence of an event. 15 12, The method according to clairn 11, comprising recognising a flowline shut-in event in which flow within the flowline is significantly reduced or is stopped. [7] 13. The method according to claim 12, comprising recognising a flow rate variation 20 and associating this with a flowline shut-in event. [8] 14. The method according to claim 12 or 13, comprising recognising a pressure variation and associating this with a flowline shut-in event. 25 15. The method according to claim 14, comprising recognising a pressure variation beyond a threshold value and associating this with a flowline shut-in event, [9] 16. The method according to claim 14 or 15, comprising recognising a pressure variation as a function of time and associating this with a shut-in event. 30 17, The method according to claim 16, comprising recognising the occurrence of a pressure variation beyond a threshold value for a threshold or predetermined time period. WO 2013/124645 PCT/GB2013/050403 21 [10] 18. The method according to any preceding claim, comprising recognising a flow initiating event in which flow within the flowline is initiated or is significantly increased. [11] 19. The method according to daim 18, comprising recognizing a pressure variation 5 within the flowline and associating this with a flow initiating event. [12] 20. The method according to any preceding claim, comprising controlling the flow control device by altering the mode of operation of said device. 10 21. The method according to any preceding claim, comprising controlling the flow control device to cease signal transmission in response to a recognised condition change. 22, The method according to any preceding claim, comprising ceasing signal 15 transmission in response to a recognised flowline shut-in event. [13] 23. The method according to any preceding claim, comprising reinitiating signal transmission in response to a recognised condition change. 20 24. The method according to any preceding claim, comprising controlling the flow control device to reinitiate signal transmission in response to a recognised flow initiating event. [14] 25. The method according to any preceding claim, comprising controlling the flow 25 control device to cease signal transmission and collecting and storing data during the period of ceased transmission. 26, The method according to claim 25, comprising controlling the flow control device to reinitiate signal transmission and composing one or more signals to transmit 30 at least a portion of the data stored during the period of ceased transmission. [15] 27. The method according to any preceding claim, comprising controlling the flow control device by modifying operational parameters stored within the flow control device, 35 WO 2013/124645 PCT/GB2013/050403 22 28, The method according to claim 27, wherein the flow control device is operated in accordance with specific algorithms or protocols, wherein such algorithms or protocols are modified in accordance with a recognised condition change within the flowline, 5 [16] 29. The method according to claim 27 or 28, wherein the flow control device comprises a parameter matrix, and the method comprises modifying parameters within the matrix in accordance with a recognised condition change. 10 30. The method according to any preceding claim, comprising monitoring a condition associated with the flowline to provide for recognising a condition change. [17] 31. The method according to claim 30, wherein monitoring is provided by use of one or more sensors. 15 [18] 32. The method according to claim 31, wherein at least one sensor is provided exclusively for such monitoring. [19] 33. The method according to claim 31 or 32, wherein at least one sensor is 20 provided for both data collection to be transmitted and monitoring. [20] 34. The method according to any preceding claim, comprising recognising at least one of a pressure condition change, a temperature condition change, a flow rate condition change and a fluid composition condition change, 25 [21] 35. The method according to any preceding claim, comprising determining or composing an optimised signal for detection at a remote location, and transmitting said optimised signal using the flow control device. 30 36. The method according to claim 35, comprising composing or determining an optimised signal in accordance with a simulation associated with the flowline. 37, The method according to claim 35 or 36, comprising composing or determining an optimised signal by transmitting one or more test signals. 35 WO 2013/124645 PCT/GB2013/050403 23 [22] 38. The method according to claim 35, 36 or 37, comprising: transmitting a plurality of pressure based test signals; receiving at least one test signal at a receiver; determining or selecting an optimal signal from the at least one received test 5 signal; and transmitting a determined or selected optimal pressure based signal through the fluid within the flowline. [23] 39. The method according to claim 38, comprising receiving a plurality of test 10 signals at the receiver and determining or selecting an optimal signal from the plurality of received test signals. [24] 40. The method according to claim 38 or 39, wherein two or more test signals are composed with at least one different signal parameter. 15 [25] 41. The method according o claim 38, 39 or 40, comprising communicating a positive determination of an optimal signal from the receiver to the flow control device, [26] 42. The method according to claim 41, comprising communicating a positive 20 determination by wireless transmission of a signal, such as a pressure based signal, for example the determined optimal signal. [27] 43. The method according to claim 41 or 42, comprising communicating a positive determination by performance or initiation of a recognisable event within the flowline, 25 such as a shut-in event. [28] 44. A communication apparatus for communication within a flowline, comprising: a flow control device configured for transmitting a pressure based signal through a fluid within a flowline; 30 a monitoring system for monitoring at least one condition associated with the flowline; and a controller configured to control the flow control device in accordance with a condition change recognised by the monitoring system. WO 2013/124645 PCT/GB2013/050403 24 [29] 45. The apparatus according to claim 44, comprising a receiver which is posited remotely from the flow control device and which is configured for detection/reception of a transmitted signal, 5 46, A method for use in communicating within a fowline, comprising: transmitting a pressure based signal through a fluid within a flowline using a flow control device; and controlling the flow control device upon recognition of a condition change within the flowline. 10 [30] 47. A method for use in communication within a flowline, comprising: determining or composing an optimised pressure based signal for detection at a remote location; and transmitting said optimised signal using a flow control device. 15 [31] 48. The method according to claim 47, comprising composing or determining an optimised signal in accordance with a simulation associated with the flowline. [32] 49. The method according to claim 47 or 48, comprising composing or determining 20 an optimised signal by transmitting one or more test signals. [33] 50. The method according to claim 47, 48 or 49, comprising: transmitting a plurality of pressure based test signals; receiving at least one test signal at a receiver; 25 determining or selecting an optimal signal from the at least one received test signal; and transmitting a determined or selected optimal pressure based signal through the fluid within the fiowline. 30 51. The method according to claim 50, comprising receiving a plurality of test signals at the receiver and determining or selecting an optimal signal from the plurality of received test signals, [34] 52. The method according to claim 50 or 51, wherein two or more test signals are 35 composed with at least one different signal parameter. WO 2013/124645 PCT/GB2013/050403 25 [35] 53. The method according to claim 50, 51 or 52, comprising communicating a positive determination of an optimal signal from the receiver to the flow control device. 5 54. The method according to claim 53, comprising communicating a positive determination by wireless transmission of a signal, such as a pressure based signal, for example the determined optimal signal. [36] 55. The method according to claim 53 or 54, comprising communicating a positive 10 determination by performance or initiation of a recognisable event within the flowline, such as a shut-in event.
类似技术:
公开号 | 公开日 | 专利标题 AU2013223875B2|2017-05-25|Wireless communication US20180347312A1|2018-12-06|Autonomous control valve for well pressure control US8925631B2|2015-01-06|Large bore completions systems and method US6046685A|2000-04-04|Redundant downhole production well control system and method US5732776A|1998-03-31|Downhole production well control system and method US9181942B2|2015-11-10|System and method for subsea production system control US5706896A|1998-01-13|Method and apparatus for the remote control and monitoring of production wells GB2333791A|1999-08-04|Tool stop for production well WO1996024748A1|1996-08-15|Production wells having permanent downhole formation evaluation sensors CN104854306B|2019-03-01|Widened mud-pulse telemetry US20100243243A1|2010-09-30|Active In-Situ Controlled Permanent Downhole Device US8839850B2|2014-09-23|Active integrated completion installation system and method US20160170417A1|2016-06-16|Wireless Surface Controlled Active Inflow Control Valve System RU2552555C1|2015-06-10|Method of simultaneous separate or successive production of reservoir fluid from well of multipay fields with preliminary installation of packers RU2440488C2|2012-01-20|Method of simultaneous separate operation of multiple-zone wells and device for its implementation US10815753B2|2020-10-27|Operation of electronic inflow control device without electrical connection Algeroy et al.2000|Equipment and operation of advanced completions in the M-15 Wytch Farm multilateral well Green et al.2014|Wireless Retrofit Solutions to Replace Failed Permanent Downhole Gauges: Case Study in a Gas Well Naldrett et al.2012|Wireless Wellbore-The Way Ahead CN111396002A|2020-07-10|Underground wireless flow control valve tool with wireless duplex communication and system thereof Vachon et al.2005|Production Optimization in ESP Completions with Intelligent Well Technology AU4114999A|1999-09-16|Computer controlled downhole tools for production well control
同族专利:
公开号 | 公开日 CN104254988A|2014-12-31| GB2499593A|2013-08-28| GB2499593B|2018-08-08| GB2499593B8|2018-08-22| DK2817901T3|2020-02-03| WO2013124645A1|2013-08-29| CA2864983A1|2013-08-29| AU2013223875B2|2017-05-25| EP2817901B1|2019-10-23| US20150009039A1|2015-01-08| GB201202923D0|2012-04-04| EP2817901A1|2014-12-31|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US3065416A|1960-03-21|1962-11-20|Dresser Ind|Well apparatus| US3321965A|1964-10-08|1967-05-30|Exxon Production Research Co|Method for testing wells| US3887010A|1971-04-05|1975-06-03|Otis Eng Co|Well flow control method| US4161215A|1975-09-26|1979-07-17|Continental Oil Company|Solenoid operated tubing safety valve| US5150333A|1977-12-05|1992-09-22|Scherbatskoy Serge Alexander|Method and apparatus for providing improved pressure pulse characteristics for measuring while drilling| US4405021A|1980-11-28|1983-09-20|Exploration Logging, Inc.|Apparatus for well logging while drilling| US4774694A|1981-12-15|1988-09-27|Scientific Drilling International|Well information telemetry by variation of mud flow rate| US4515225A|1982-01-29|1985-05-07|Smith International, Inc.|Mud energized electrical generating method and means| US4550392A|1982-03-08|1985-10-29|Exploration Logging, Inc.|Apparatus for well logging telemetry| US4630244A|1984-03-30|1986-12-16|Nl Industries, Inc.|Rotary acting shear valve for drilling fluid telemetry systems| US5073877A|1986-05-19|1991-12-17|Schlumberger Canada Limited|Signal pressure pulse generator| US4825421A|1986-05-19|1989-04-25|Jeter John D|Signal pressure pulse generator| DE3715514C1|1987-05-09|1988-09-08|Eastman Christensen Co., Salt Lake City, Utah, Us|| US5176164A|1989-12-27|1993-01-05|Otis Engineering Corporation|Flow control valve system| US5234057A|1991-07-15|1993-08-10|Halliburton Company|Shut-in tools| US5279363A|1991-07-15|1994-01-18|Halliburton Company|Shut-in tools| US5586084A|1994-12-20|1996-12-17|Halliburton Company|Mud operated pulser| US5732776A|1995-02-09|1998-03-31|Baker Hughes Incorporated|Downhole production well control system and method| US5706896A|1995-02-09|1998-01-13|Baker Hughes Incorporated|Method and apparatus for the remote control and monitoring of production wells| US5831177A|1995-03-15|1998-11-03|Halliburton Energy Services, Inc.|Fluid driven siren flowmeter| US5691712A|1995-07-25|1997-11-25|Schlumberger Technology Corporation|Multiple wellbore tool apparatus including a plurality of microprocessor implemented wellbore tools for operating a corresponding plurality of included wellbore tools and acoustic transducers in response to stimulus signals and acoustic signals| US5823262A|1996-04-10|1998-10-20|Micro Motion, Inc.|Coriolis pump-off controller| US6388577B1|1997-04-07|2002-05-14|Kenneth J. Carstensen|High impact communication and control system| US6923273B2|1997-10-27|2005-08-02|Halliburton Energy Services, Inc.|Well system| US6237701B1|1997-11-17|2001-05-29|Tempress Technologies, Inc.|Impulsive suction pulse generator for borehole| US6219301B1|1997-11-18|2001-04-17|Schlumberger Technology Corporation|Pressure pulse generator for measurement-while-drilling systems which produces high signal strength and exhibits high resistance to jamming| US7174975B2|1998-07-15|2007-02-13|Baker Hughes Incorporated|Control systems and methods for active controlled bottomhole pressure systems| US6357525B1|1999-04-22|2002-03-19|Schlumberger Technology Corporation|Method and apparatus for testing a well| US6330913B1|1999-04-22|2001-12-18|Schlumberger Technology Corporation|Method and apparatus for testing a well| US6469637B1|1999-08-12|2002-10-22|Baker Hughes Incorporated|Adjustable shear valve mud pulser and controls therefor| US6604582B2|2000-06-05|2003-08-12|Schlumberger Technology Corporation|Downhole fluid pressure signal generation and transmission| US6714138B1|2000-09-29|2004-03-30|Aps Technology, Inc.|Method and apparatus for transmitting information to the surface from a drill string down hole in a well| US6920085B2|2001-02-14|2005-07-19|Halliburton Energy Services, Inc.|Downlink telemetry system| US7417920B2|2001-03-13|2008-08-26|Baker Hughes Incorporated|Reciprocating pulser for mud pulse telemetry| US6626042B2|2001-06-14|2003-09-30|Honeywell International Inc.|Communication for water distribution networks| CA2396086C|2002-07-30|2011-04-05|Precision Drilling Technology Services Group Inc.|Method and device for the measurement of the drift of a borehole| US7397388B2|2003-03-26|2008-07-08|Schlumberger Technology Corporation|Borehold telemetry system| US7171309B2|2003-10-24|2007-01-30|Schlumberger Technology Corporation|Downhole tool controller using autocorrelation of command sequences| US7139219B2|2004-02-12|2006-11-21|Tempress Technologies, Inc.|Hydraulic impulse generator and frequency sweep mechanism for borehole applications| NO325613B1|2004-10-12|2008-06-30|Well Tech As|Wireless data transmission system and method in a production or injection well using fluid pressure fluctuations| NO325614B1|2004-10-12|2008-06-30|Well Tech As|System and method for wireless fluid pressure pulse-based communication in a producing well system| US8517113B2|2004-12-21|2013-08-27|Schlumberger Technology Corporation|Remotely actuating a valve| US7518950B2|2005-03-29|2009-04-14|Baker Hughes Incorporated|Method and apparatus for downlink communication| US7313052B2|2005-04-08|2007-12-25|Baker Hughes Incorporated|System and methods of communicating over noisy communication channels| WO2007021274A1|2005-08-15|2007-02-22|Welldynamics, Inc.|Pulse width modulated downhole flow control| US7478555B2|2005-08-25|2009-01-20|Schlumberger Technology Corporation|Technique and apparatus for use in well testing| US8474548B1|2005-09-12|2013-07-02|Teledrift Company|Measurement while drilling apparatus and method of using the same| US7735579B2|2005-09-12|2010-06-15|Teledrift, Inc.|Measurement while drilling apparatus and method of using the same| US8037747B2|2006-03-30|2011-10-18|Baker Hughes Incorporated|Downhole fluid characterization based on changes in acoustic properties| EP2021768B1|2006-06-01|2016-09-14|Shell Internationale Research Maatschappij B.V.|Downhole tools for terahertz time domain analysis of a formation fluid and corresponding analysis method| MX2013007732A|2011-01-04|2014-12-05|Welltronics Applic Llc|Method for a pressure release encoding system for communicating downhole information through a wellbore to a surface location.| US7881155B2|2006-07-26|2011-02-01|Welltronics Applications LLC|Pressure release encoding system for communicating downhole information through a wellbore to a surface location| US8540027B2|2006-08-31|2013-09-24|Geodynamics, Inc.|Method and apparatus for selective down hole fluid communication| US7706980B2|2007-02-01|2010-04-27|Bp Corporation North America Inc.|Blowout preventer testing system and method| US20080230221A1|2007-03-21|2008-09-25|Schlumberger Technology Corporation|Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors| GB2450681A|2007-06-26|2009-01-07|Schlumberger Holdings|Multi-position electromagnetic actuator with spring return| WO2009033146A2|2007-09-07|2009-03-12|Allen Young|Mud pulse telemetry system| US20100025111A1|2008-07-23|2010-02-04|Marvin Gearhart|Direct Drive MWD Tool| US20100170673A1|2009-01-08|2010-07-08|Baker Hughes Incorporated|System and method for downhole blowout prevention| US8408330B2|2009-04-27|2013-04-02|Schlumberger Technology Corporation|Systems and methods for canceling noise and/or echoes in borehole communication| US8173955B2|2009-04-28|2012-05-08|Schlumberger Technology Corporation|Methods and apparatus to optically determine velocities of downhole fluids| US8514657B2|2009-07-23|2013-08-20|Halliburton Energy Services, Inc.|Generating fluid telemetry| US8757254B2|2009-08-18|2014-06-24|Schlumberger Technology Corporation|Adjustment of mud circulation when evaluating a formation| US8267197B2|2009-08-25|2012-09-18|Baker Hughes Incorporated|Apparatus and methods for controlling bottomhole assembly temperature during a pause in drilling boreholes| US20110155368A1|2009-12-28|2011-06-30|Schlumberger Technology Corporation|Radio frequency identification well delivery communication system and method| US10001573B2|2010-03-02|2018-06-19|Teledrill, Inc.|Borehole flow modulator and inverted seismic source generating system| AU2010356085B2|2010-06-21|2014-09-18|Halliburton Energy Services, Inc.|Mud pulse telemetry| US8564179B2|2010-08-03|2013-10-22|Baker Hughes Incorporated|Apparatus and method for downhole energy conversion| US8973676B2|2011-07-28|2015-03-10|Baker Hughes Incorporated|Active equivalent circulating density control with real-time data connection| US9133708B2|2011-08-31|2015-09-15|Schlumberger Technology Corporation|Estimation and compensation of pressure and flow induced distortion in mud-pulse telemetry| US9309762B2|2011-08-31|2016-04-12|Teledrill, Inc.|Controlled full flow pressure pulser for measurement while drilling device| US9103180B2|2011-09-09|2015-08-11|Baker Hughes Incorporated|Drilling apparatus including a fluid bypass device and methods of using same| US9598920B2|2011-09-09|2017-03-21|Baker Hughes Incorporated|Drilling apparatus including a fluid bypass device and methods of using same| EP2780548B1|2011-11-14|2017-03-29|Halliburton Energy Services, Inc.|Apparatus and method to produce data pulses in a drill string| CA2770979A1|2012-03-08|2013-09-08|Cathedral Energy Services Ltd.|Method for transmission of data from a downhole sensor array| EP2847423A4|2012-05-09|2016-03-16|Halliburton Energy Services Inc|Enhanced geothermal systems and methods| GB2544799A|2015-11-27|2017-05-31|Swellfix Uk Ltd|Autonomous control valve for well pressure control|DE102015101328A1|2015-01-29|2016-08-04|Airbus Operations Gmbh|System and method for repairing a component made from a plastic| GB2544799A|2015-11-27|2017-05-31|Swellfix Uk Ltd|Autonomous control valve for well pressure control| US10815753B2|2016-04-07|2020-10-27|Halliburton Energy Services, Inc.|Operation of electronic inflow control device without electrical connection| CN108397173A|2018-02-07|2018-08-14|中国石油天然气股份有限公司|Seperated layer water injection system and layered water injection method| CN109723434A|2018-12-29|2019-05-07|中国科学院地质与地球物理研究所|Drilling tool pressure pulse perseverance amplitude adjusted method and regulating system| CN110185422A|2019-05-23|2019-08-30|中国海洋石油集团有限公司|A kind of novel cable-free type data double-way transmitting device of water injection well|
法律状态:
2017-09-21| FGA| Letters patent sealed or granted (standard patent)|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 GB1202923.7A|GB2499593B8|2012-02-21|2012-02-21|Wireless communication| GB1202923.7||2012-02-21|| PCT/GB2013/050403|WO2013124645A1|2012-02-21|2013-02-20|Wireless communication| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|